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Abstract

This paper is concerned with the stability of in
at-
able structures that are constructed by joining to-
gether a number of gores in such a way that the mem-
brane forms a series of bulges or lobes. Under certain
conditions the nominal con�guration of these struc-
tures is unstable, and hence a deployment scenario
may be envisaged where the structure will never as-
sume its intended shape. Instead, it may end up in
a distorted, but more stable con�guration. This pa-
per considers two structures, a cylinder with circum-
ferential lobes and a more general lobed spheroidal
con�guration, typical of high-pressure balloons. The
stability of both structures is shown to depend on
their geometry.

Background and Introduction

Membrane structures have a long history as sails,
balloons, parachutes and decelerators. A good exam-
ple of an in
atable membrane structure is the scien-
ti�c balloon shown in Figure 1. Other examples are
found in the parachutes and in
atable gasbags used
by the Mars Path�nder Mission1, shown in Figure 2.

This paper is concerned with in
atable mem-
brane structures that are made from a number of
segments such that the expected in
ated con�gura-
tion is a regular shape consisting of a series of lobes.
The membrane material is assumed to be very thin,
hence only tensile stresses are admissible.

Most structural designers are familiar with the
criteria for the design of conventional rigid struc-
tures. In
atable membrane structures behave dif-
ferently; their 
exibility makes them unable to carry
compression or moments, and leads to the possibil-
ity of them having di�erent useful con�gurations. It

also leads to somewhat unusual problems in relation
to their stability.

Figure 1: Scienti�c balloon (Courtesy of NASA).

Figure 2: Mars Path�nder Lander (Courtesy of NASA).
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Figure 3: Endeavour balloon (Courtesy of J. Nott).

Our work on lobed in
atable structures origi-
nated from a problem with the stability of Endeav-
our, a high pressure balloon designed for circum-
navigation of the globe by Julian Nott. The bal-
loon originally consisted of sixty-four lobes but when
in
ated it adopted a non-symmetrical shape, Fig-
ure 3. Removal of two lobes and re-in
ation dimin-
ished but did not eliminate the asymmetry problem.
Two more lobes were removed to give a balloon with
sixty lobes and on re-in
ation this balloon adopted
the nominal shape. This problem was studied by
Calladine2 who proposed an equivalent sti�ness ap-
proach by studying the buckling of an equivalent Eu-
ler strut.

Like all structures, the stability of an in
ated
membrane structure depends on the potential energy
of the system. This gives the following expression:

E = EG +EM (1)

Here EG is the potential energy due to the gas in
the balloon, hence EG = �pV where p is the pres-
sure (constant) and V the enclosed volume. EM
is the elastic strain energy in the membrane which
will be neglected in our analysis. Hence, assuming
E ' �pV , the stability of a lobed in
atable struc-
ture may be determined by examining the variation
of its volume V with the con�guration of the struc-
ture.

This paper studies two systems to demonstrate
stability problems with lobed in
atable structures.
The �rst study is a column with circumferential
lobes. This introduces some of the problems en-
countered in a simple three-dimensional system and
the methods required to approach these problems.
It also acts as an introduction to the second study,
a lobed spheroid of more signi�cant mathematical
complexity.

Stability of a Lobed Column

The lobed column shown in Figure 4(a) is a sim-
ple, rather abstract example that can display un-
stable behaviour. A mode of buckling is shown in
Figure 4(b). The column consists of n identical hol-
low doughnut shaped elements with a central hole,
joined together on the edges. The ends are sealed by
two rigid plates that are held at a �xed distance by
an inextensible cable P1P2 of length nh . A typical
column is shown in Figure 4.

(a) (b)

Figure 4: Lobed column in (a) nominal and (b) buck-
led con�gurations.

Vertical sections through the structure are shown
in Figure 5, showing the nominal con�guration, and
Figure 6, showing the deformed con�guration. It is
assumed that the circumferential \hoops" that sepa-
rate the lobed segments maintain their shape in this
buckling mode. Note that the length of P1P2 re-
mains unchanged. Also note that the centreline of
the column, which no longer coincides with P1P2, is
now curved and has become longer.

It will be assumed that in the buckled con�gu-
ration the centreline becomes an arc of a circle. A
more general shape (for example a sine wave) would
be more accurate but it would also lead to unneces-
sary complication of the calculations.

The segments of the column distort identically if
it is assumed that the axis of the cylinder de
ects
into an arc of a circle. Let the angle subtended by
the two end plates be 2	, as shown in Figure 6. Let
the angle subtended by the circumferential hoops at
the top and bottom of each segment be  .

In the nominal con�guration the structure is ax-
isymmetric and it is easiest to determine the enclosed
volume by multiplying by 2� the area of the cross-
section in Figure 5. The deformed structure is not
axisymmetric, but its volume can still be derived
from the area of the cross-section in Figure 6. An
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expression is derived for the cross-sectional area of
a segment in the plane of de
ection and this expres-
sion will be later modi�ed to �nd the expression for a
general segment cross-section. The segment volume
will then be found by integration.

h2q

B

P1

P2

Figure 5: Cross-section of column.

2Y

P1

P2

Figure 6: Cross-section of buckled column.
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Figure 7: Vertical cross-section of a lobe.

First consider the cross-sectional area of a lobe
of radius r and subtending an angle 2�; the arc and
chord lengths are respectively s and x, see Figure 7.
Clearly

x =
s sin �

�
(2)

It can be shown that the area of the segment between
the chord and the arc has the expression

A0 =
s2

4

�
1

�
� cos � sin �

�2

�
(3)

Next, following Calladine2, consider the cross-
section of a typical segment as shown in Figure 8
(recall that all segments are identical).

h

h+vh+u

B

(a)

(c)

(b)

h(1+e) + By h(1+e)
2

h(1+e) - By
2

Figure 8: Cross-sections of a segment in the plane of
deformation.

Figure 8(a) shows the segment in the undeformed
con�guration and Figure 8(b) shows the deformed
segment. Figure 8(c) shows the same deformed seg-
ment but without the lobes.

Let " be the small axial strain of the column
P1P2. From Figure 6

" =
nh	= sin	� nh

nh
=

	

sin	
� 1 (4)

Noting that

	 =
L

2h
 (5)

we obtain

" =
L 

2h

1

sin(L =2h)
� 1 (6)

In Figure 8(b) the cross-sectional area of the
lobes that have become elongated is denoted by A1

while the cross-sectional area of the lobes on the
shortened side is A2. A truncated Taylor series ex-
pansion may be used to approximate A1 and A2 in
terms of the undeformed area A0. Then

A1 = A0 + uA0
0 + u2A0

00=2 + : : : (7)

A2 = A0 + vA0
0 + v2A0

00=2 + : : : (8)

where A0
0 andA0

00 are respectively the �rst and sec-
ond derivatives of A0 with respect to x. The follow-
ing expressions were obtained by Calladine2

A0
0
= �s

2

cos �

�
(9)

A00
0 = �

1

2

cos � + � sin �

sin � � � cos � (10)
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Comparing Figure 8(b) to (a)

h+ u = h(1 + ") +B =2 (11)

Substituting Equation 6 and rearranging

u =
L 

2

1

sin(L =2h)
� h+ B 

2
(12)

and similarly

v =
L 

2

1

sin(L =2h)
� h� B 

2
(13)

Using the approximation

sin	

	
� 1� 	2

6
(14)

we obtain

u =
h 2

24

L2

h2
+
B 

2
(15)

and

v =
h 2

24

L2

h2
� B 

2
(16)

The change in cross-sectional area of a lobe seg-
ment �As may be evaluated by taking the di�erence
between the area of a trapezium plus A1 + A2 and
the area of a rectangle plus 2A0. Hence, after sim-
pli�cation

�As = B(u=2 + v=2) +A0
0(u+ v)

+A0
00(u2 + v2)=2 (17)

The di�erence in potential energy between the
buckled and nominal con�guration of the system,
and hence its stability, depends on the change in
volume �Vs. Hence, the expression for �As is in-
tegrated over the segment to obtain �Vs. Referring
to Figure 9 the values of u and v are replaced by
u sin' and v sin' respectively to obtain the area of
a general cross-section, which is rotated through �
around the axis

�Vs =

�Z
0

�
B
u+ v

2
sin'+A0

0(u+ v) sin'

+A0
00u

2 + v2

2
sin2 '

�
d' (18)

v
2

u
2

j

v
2

sin j

u
2

sin j

Figure 9: De�nition of deformation parameters.

The change in volume must be negative for the
system to be stable, implying that Equation 18 must
be negative. Equations 15 and 16 may be used to
evaluate u+ v and u2 + v2

u+ v = 2

�
h 2

24

��
L

h

�2

(19)

u2 + v2 =

�
h 2

24

�2�
L

h

�4

+
B2 2

4
(20)

Substituting back into Equation 18, ignoring higher
order terms, and setting �Vs < 0

�Z
0

"
B
h 2

24

�
L

h

�2

sin'+ 2A0
0

h 2

24

�
L

h

�2

sin'

+A00
0

B2 2

4
sin2 '

#
d' < 0 (21)

Rearranging

B 2L2

24h

�Z
0

�
sin'+

2

B
A0
0 sin'

+
6hB

L2
A00
0 sin

2 '

�
d' < 0 (22)

Neglecting the positive factor in Equation 22 and
integrating

1 +
2

B
A0
0 +

3�hB

2L2
A00
0 < 0 (23)

Substituting Equations 9 and 10 into Equation 23
and rearranging

1� h

B

cos �

sin �
� 3�hB

4L2

cos � + � sin �

sin � � � cos � < 0 (24)

It can be shown that the third term in this equation
is much bigger than the second. Hence the following
stability condition is obtained

3�

4

hB

L2
>

sin � � � cos �
cos � + � sin �

(25)

This equation shows that stability increases with
the width of the column and the height of the seg-
ments, but decreases quadratically with the length of
the structure. The right hand side of Equation 25 in-
creases with increasing � hence less prominent lobes
lead to more stable structures. This equation may
also be rewritten as

3�

4

a

n
>

sin � � � cos �
cos � + � sin �

(26)
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where n is the number of segments and a is the as-
pect ratio (= B=L) of the entire structure. Using this
equation it is easy to construct columns that are un-
stable; for example a 1 m long column of width 0:3 m
in which each has an angle of embrace 2� of 60Æ will
buckle if twenty segments are used. A column of the
same dimensions but using only �fteen segments will
be stable. Note that this result is independent of the
pressure in the column.

Stability of a Lobed Spheroid

This section examines the stability of a spheroidal
structure with lobes as shown in Figure 10. The
structure consists of sixteen gores attached to inex-
tensible tapes along the edges. The pro�le of the
tapes when a uniform pressure di�erence is applied
to the structure was �rst studied by Taylor3 dur-
ing an analysis of the shapes of parachutes. It was
later extended to other kinds of decelerators4, and
the same approach has been recently proposed for
high pressure scienti�c balloons.5{7

The standard design approach for these struc-
tures is based on the idea that the membrane forms
a series of small circular hoops which transmit the
pressure load to the meridional tapes. It is un-
stressed in the meridional direction and hence it is
likely to start wrinkling in this direction. The tapes
are highly stressed and take up a \funicular" shape
which is determined by the applied loads.

0.5
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0.4
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0.3
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Figure 10: View of lobed spheroidal (nominal con-
�guration)

The transverse lobe curvature, i.e. normal to the
meridians, is assumed to be constant for equilibrium.
The transverse radius of curvature need not be con-
stant along the meridian, but it will be assumed to
be so in the present study.

Pro�le of Meridional Tapes

This section is based on the work of Taylor3 with
some minor modi�cations.

R

dR

j
dj

s

z

central
axis

j

j+dj

dR

pR2qg

(a)

(b)

Figure 11: (a) Elevation of a meridian (b) detail of
in�nitesimal free body.

Vertical equilibrium of the in�nitesimal element of
meridian shown in Figure 11(a) yields

d

dR
(TR sin') = pR (27)

where �s and p are respectively the segment semi-
angle and the pressure and the other variables are as
shown in Figure 11. Horizontal equilibrium gives

d

dR
(TR cos') = �pR tan' (28)

It can then be shown that

R2

R0
2
= sin' (29)

where R0 is the (maximum) horizontal radius of the
meridian.
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ψ

Figure 14: Edge-on view of a meridian in second
buckling mode.
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ϕ

Figure 15: Vertical cross-section between meridians

The contribution from the �rst buckling mode
can be represented by a vertical deformation Æ of
one side of the rectangle while the contribution from
the second buckling mode can be represented by a
rotation ' of the other side. The area of the cross-
section becomes greater in the deformed shape, as
can be seen by comparing the areas that are lost
with those gained (shaded in Figure 15). Because
the volume of a whole balloon is, in e�ect, obtained
by integrating over a series of elementary volumes
with the cross-sections shown in Figure 15, we have
thus shown that the volume enclosed in a balloon |
excluding the lobes | can be expected to increase
for any combined mode. In fact, as we will see at
the end of the paper, for small deformation ampli-
tudes the volume of the segments decreases, due to
the fact that in the �rst mode the meridians are be-
ing rotated. The volume enclosed by the lobes will
decrease in the buckled con�guration, but this is a
less signi�cant e�ect in some con�gurations.

A view of the meridians for the third buckling
mode is shown in Figure 16 for a maximum defor-
mation of 5

Æ

. Figure 17 presents the same structure,
but with the lobes shown.

Figure 16: Meridians in third buckling mode.

Figure 17: Third buckling mode.

Volume Calculations
The volumes of a number of di�erent balloons with
di�erent numbers of segments were calculated us-
ing Matlab.9 The volume calculation algorithm is
divided into two parts. The �rst part determines
the volume of the segments assuming 
at lobes. The
input required to do this calculation is a set of n
points on each meridian, typically n = 21 plus a sin-
gle point on the central axis. These points de�ne the
vertices of n� 1 pyramids, one of which is shown in
Figure 18. Each pyramid is divided into two tetrahe-
dra, as shown, whose volume can be calculated from

Volume =
1

6

x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
x4 y4 z4 1

(34)

where (xi; yi; zi) are the cartesian coordinates of
point i. The volume of a whole segment is deter-
mined by summing the volumes of n � 1 pyramids,
and the volume of the whole balloon is the sum of
the volumes of all of its segments.
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Figure 18: Volume discretisation scheme.

The second part of the volume calculation algo-
rithm deals with the lobes. In analogy with the �rst
part, m points | typically m = 11 | are located
on the circular arc that de�nes a section of the lobe
passing through two corresponding points on neigh-
bouring meridians. In addition, points are de�ned
on corresponding chords, Figure 18(b). The volume
enclosed by this part of the lobe is obtained, again,
by summing the volumes of several tetrahedra. The
volume of a whole lobe is obtained by summingm�1
contributions.

Calculations were performed for balloons with
sixteen, thirty-two and sixty-four meridians with
L = 2, for three di�erent lobe radii of curvature
Rl. Table 1 presents the results for the undeformed
case. Table 2 presents the results for the third type
of buckling mode where the deformation varies as
a single sine wave around the circumference. Ta-
bles 3 and 4 present the results for deformation
modes based on double and quadruple sine waves
respectively. The results are presented for four dif-
ferent amplitudes of the buckling mode. Note that
the upper-right part of each table is empty, because
the smaller values of Rl=L are not admissible for bal-
loons with a small number of meridians.

Number of Rl=L
Meridians 0.4 0.2 0.1

16 1.3359 - -

32 1.2330 1.2784 -

64 1.2125 1.2214 1.2439

Table 1: Volume of undeformed structure.

Number of Ampl. Rl=L
Meridians (Æ) 0.4 0.2 0.1

16 0.5 1.3330 - -
1.0 1.3259 - -
2.0 1.3105 - -
5.0 1.2644 - -

32 0.5 1.2282 1.2768 -
1.0 1.2204 1.2732 -
2.0 1.2158 1.2648 -
5.0 1.2088 1.2417 -

64 0.5 1.2085 1.2189 1.2431
1.0 1.2078 1.2150 1.2412
2.0 1.2068 1.2126 1.2368
5.0 1.2026 1.2075 1.2237

Table 2: Volume of structure deformed in a single
sine wave.

Number of Ampl. Rl=L
Meridians (Æ) 0.4 0.2 0.1

16 0.5 1.3107 - -
1.0 1.2727 - -
2.0 1.2492 - -
5.0 1.3508 - -

32 0.5 1.2166 1.2660 -
1.0 1.2116 1.2488 -
2.0 1.2068 1.2358 -
5.0 1.3623 1.3935 -

64 0.5 1.2072 1.2132 1.2374
1.0 1.2065 1.2114 1.2294
2.0 1.2043 1.2088 1.2226
5.0 1.3759 1.3801 1.3884

Table 3: Volume of structure deformed in a double
sine wave.

Number of Ampl. Rl=L
Meridians (Æ) 0.4 0.2 0.1

16 0.5 1.2382 - -
1.0 1.2055 - -
2.0 1.5539 - -
5.0 1.9897 - -

32 0.5 1.2076 1.2359 -
1.0 1.2768 1.2977 -
2.0 1.6137 1.6335 -
5.0 2.5510 2.5776 -

64 0.5 1.2058 1.2094 1.2239
1.0 1.2809 1.2847 1.2964
2.0 1.7119 1.7150 1.7252
5.0 2.9466 2.9490 2.9570

Table 4: Volume of structure deformed in a quadru-
ple sine wave.

A comparison of the volumes of the deformed
balloon, Tables 2{4, with the volumes of the corre-
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sponding balloons in the nominal con�guration, Ta-
ble 1, shows that the single sine wave mode leads to
smaller volumes. The modes with higher wave num-
bers produce a volume increase for suÆciently large
amplitudes.

Discussion

Prior to the study presented in this paper there was
little evidence of instability in membrane structures.
The Endeavour balloon provided physical proof that
instability could be a problem and this was the main
inspiration for this work.

Both of the structures investigated in this pa-
per show unstable behaviour. The analysis of the
lobed cylinder demonstrates that a simple membrane
structure becomes unstable for certain parameters.
The system stability may be determined by exam-
ining just three parameters, namely the number of
lobes n, the overall aspect ratio a and the half-angle
� embraced by the lobes in cross-section.

The lobed spheroid is more complex and its un-
stable deformation modes are more subtle. A de-
formation mode was proposed which was found to
produce unstable behaviour. An interesting feature
of this mode is that the enclosed volume initially de-
creases with increasing deformation. This feature
was investigated further by calculating separately
the lobe and segment volumes. Table 5 shows the
results for balloons with Rl=L = 0:4 and L = 2, that
are deformed into a double sine wave.

The volume of the segments initially decreases
until there is suÆcient deformation to result in an
increase in the segment volume. The volume of the
lobes decreases monotonically. The total volume ini-
tially decreases before increasing until such time that
it is greater than the initial volume. At this point it
may be said that the structure is more stable in the
deformed mode.

The relative stability of the deformed shapes may
be seen more clearly if the volumes are normalised
relative to the corresponding nominal volume. Ta-
ble 6 presents these values for a double sine wave
mode.

It is clear that the change in total volume and
hence the stability of the balloon is closely linked to
the number of meridians. The greater the number of
meridians the smaller the amount of deformation re-
quired to cause the total volume to increase. This is
shown in Figure 19 which is a plot of the normalised
volumes for Rl=L = 0:4.

Number of Ampl. Volume
Meridians (Æ) Segments Lobes Total

16 0 1.1753 0.1606 1.3359
0.5 1.1746 0.1361 1.3107
1.0 1.1724 0.1003 1.2727
2.0 1.1634 0.0858 1.2492
5.0 1.2836 0.0672 1.3508

32 0 1.1983 0.0346 1.2330
0.5 1.1981 0.0185 1.2166
1.0 1.1973 0.0143 1.2116
2.0 1.1940 0.0127 1.2068
5.0 1.3524 0.0099 1.3623

64 0 1.2041 0.0084 1.2125
0.5 1.2040 0.0032 1.2072
1.0 1.2036 0.0029 1.2065
2.0 1.2018 0.0024 1.2043
5.0 1.3742 0.0017 1.3759

Table 5: Volume of structure deformed in a double
sine wave, Rl=L = 0:4.

Number of Ampl. Rl=L
Meridians (Æ) 0.4 0.2 0.1

16 0.5 0.9811 - -
1.0 0.9527 - -
2.0 0.9351 - -
5.0 1.0112 - -

32 0.5 0.9867 0.9903 -
1.0 0.9826 0.9768 -
2.0 0.9788 0.9667 -
5.0 1.1049 1.0900 -

64 0.5 0.9956 0.9933 0.9948
1.0 0.9951 0.9918 0.9883
2.0 0.9932 0.9897 0.9829
5.0 1.1348 1.1299 1.1162

Table 6: Normalised volume of structure deformed
in a double sine wave.
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Figure 19: Variation of normalised volume with de-
formation amplitude (Rl=L = 0:4; L = 2).
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The value of Rl, the transverse radius of curva-
ture of the lobes, also has an e�ect on the total vol-
ume but this is less noticeable. Examination of Ta-
ble 5 shows that the volume of the segments is much
greater than the volume of the lobes and hence the
lobes do not have as signi�cant an e�ect as the num-
ber of meridians.

Conclusion

It has been shown that both a simple lobed column
and a lobed spheroid may become unstable. The
stability of the lobed column depends entirely on its
geometry. The stability of the spheroid depends both
on the geometry of the structure and on a small but
�nite perturbation. The size of the perturbation re-
quired to cause the structure to become unstable de-
pends closely on the deformation mode and on the
number of meridians in the structure. The larger
the number of meridians the smaller the perturba-
tion required to cause instability. The e�ect of the
lobe geometry is not as signi�cant as for the column.
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