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Abstract

This paper is concerned with the stability of inflat-
able structures that are constructed by joining to-
gether a number of gores in such a way that the mem-
brane forms a series of bulges or lobes. Under certain
conditions the nominal configuration of these struc-
tures is unstable, and hence a deployment scenario
may be envisaged where the structure will never as-
sume its intended shape. Instead, it may end up in
a distorted, but more stable configuration. This pa-
per considers two structures, a cylinder with circum-
ferential lobes and a more general lobed spheroidal
configuration, typical of high-pressure balloons. The
stability of both structures is shown to depend on
their geometry.

Background and Introduction

Membrane structures have a long history as sails,
balloons, parachutes and decelerators. A good exam-
ple of an inflatable membrane structure is the scien-
tific balloon shown in Figure 1. Other examples are
found in the parachutes and inflatable gasbags used
by the Mars Pathfinder Mission', shown in Figure 2.

This paper is concerned with inflatable mem-
brane structures that are made from a number of
segments such that the expected inflated configura-
tion is a regular shape consisting of a series of lobes.
The membrane material is assumed to be very thin,
hence only tensile stresses are admissible.

Most structural designers are familiar with the
criteria for the design of conventional rigid struc-
tures. Inflatable membrane structures behave dif-
ferently; their flexibility makes them unable to carry
compression or moments, and leads to the possibil-
ity of them having different useful configurations. It
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also leads to somewhat unusual problems in relation
to their stability.

Figure 2: Mars Pathfinder Lander (Courtesy of NASA).
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Figure 3: Endeavour balloon (Courtesy of J. Nott).

Our work on lobed inflatable structures origi-
nated from a problem with the stability of Endeav-
our, a high pressure balloon designed for circum-
navigation of the globe by Julian Nott. The bal-
loon originally consisted of sixty-four lobes but when
inflated it adopted a non-symmetrical shape, Fig-
ure 3. Removal of two lobes and re-inflation dimin-
ished but did not eliminate the asymmetry problem.
Two more lobes were removed to give a balloon with
sixty lobes and on re-inflation this balloon adopted
the nominal shape. This problem was studied by
Calladine? who proposed an equivalent stiffness ap-
proach by studying the buckling of an equivalent Fu-
ler strut.

Like all structures, the stability of an inflated
membrane structure depends on the potential energy
of the system. This gives the following expression:

(1)

Here E is the potential energy due to the gas in
the balloon, hence Eg = —pV where p is the pres-
sure (constant) and V' the enclosed volume. Ej;
is the elastic strain energy in the membrane which
will be neglected in our analysis. Hence, assuming
E ~ —pV, the stability of a lobed inflatable struc-
ture may be determined by examining the variation
of its volume V' with the configuration of the struc-
ture.

This paper studies two systems to demonstrate
stability problems with lobed inflatable structures.
The first study is a column with circumferential
lobes. This introduces some of the problems en-
countered in a simple three-dimensional system and
the methods required to approach these problems.
It also acts as an introduction to the second study,
a lobed spheroid of more significant mathematical
complexity.

E=Eg+Ey

2

Stability of a Lobed Column

The lobed column shown in Figure 4(a) is a sim-
ple, rather abstract example that can display un-
stable behaviour. A mode of buckling is shown in
Figure 4(b). The column consists of n identical hol-
low doughnut shaped elements with a central hole,
joined together on the edges. The ends are sealed by
two rigid plates that are held at a fixed distance by
an inextensible cable Py Py of length nh . A typical
column is shown in Figure 4.

Figure 4: Lobed column in (a) nominal and (b) buck-
led configurations.

Vertical sections through the structure are shown
in Figure 5, showing the nominal configuration, and
Figure 6, showing the deformed configuration. It is
assumed that the circumferential “hoops” that sepa-
rate the lobed segments maintain their shape in this
buckling mode. Note that the length of P, P> re-
mains unchanged. Also note that the centreline of
the column, which no longer coincides with P, P, is
now curved and has become longer.

It will be assumed that in the buckled configu-
ration the centreline becomes an arc of a circle. A
more general shape (for example a sine wave) would
be more accurate but it would also lead to unneces-
sary complication of the calculations.

The segments of the column distort identically if
it is assumed that the axis of the cylinder deflects
into an arc of a circle. Let the angle subtended by
the two end plates be 2V, as shown in Figure 6. Let
the angle subtended by the circumferential hoops at
the top and bottom of each segment be 1.

In the nominal configuration the structure is ax-
isymmetric and it is easiest to determine the enclosed
volume by multiplying by 27 the area of the cross-
section in Figure 5. The deformed structure is not
axisymmetric, but its volume can still be derived
from the area of the cross-section in Figure 6. An
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expression is derived for the cross-sectional area of
a segment in the plane of deflection and this expres-
sion will be later modified to find the expression for a
general segment cross-section. The segment volume
will then be found by integration.

Area, AO

Figure 7: Vertical cross-section of a lobe.

First consider the cross-sectional area of a lobe
of radius r and subtending an angle 26; the arc and
chord lengths are respectively s and z, see Figure 7.

Clearly
ssinf

r=2 (2)

It can be shown that the area of the segment between
the chord and the arc has the expression

s2 /1 cosfsinf
Ao=7 (5 - T) (3)

Next, following Calladine?, consider the cross-
section of a typical segment as shown in Figure 8
(recall that all segments are identical).
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Figure 8: Cross-sections of a segment in the plane of
deformation.

Figure 8(a) shows the segment in the undeformed
configuration and Figure 8(b) shows the deformed
segment. Figure 8(c) shows the same deformed seg-
ment but without the lobes.

Let € be the small axial strain of the column
P, P,. From Figure 6

nh¥/sin¥ —nh ¥

(4)

nh sin¥
Noting that
L
U =—
= 5)
we obtain
Ly 1

© 7 2 sin(Ly/2h) (6)

In Figure 8(b) the cross-sectional area of the
lobes that have become elongated is denoted by A;
while the cross-sectional area of the lobes on the
shortened side is As. A truncated Taylor series ex-
pansion may be used to approximate A; and A, in
terms of the undeformed area Ap. Then

Al :A0—|—’U,AOI—|—U2A0”/2+... (7)

A2 :A0+1}AOI+U2A0”/2+... (8)

where Ay' and A" are respectively the first and sec-
ond derivatives of Ay with respect to . The follow-
ing expressions were obtained by Calladine?

s cost
b= ©)

w_ 1 cosf+6sinf
Ao = 2 sinf — 6 cosf (10)
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Comparing Figure 8(b) to (a)
h+u=h(1+¢)+ B/2 (11)
Substituting Equation 6 and rearranging

Ly 1 B

=————h+— 12
Sy i@z T (12)
and similarly
Ly 1 By
=———h—— 13
YT T Sin(Ly/2h) 2 (13)
Using the approximation
sin ¥ U2
~l— — 14
T 5 (14)
we obtain WL By
= —— 4+ — 1
24 h? + 2 (15)
and WL By
BRI (16)

The change in cross-sectional area of a lobe seg-
ment AA; may be evaluated by taking the difference
between the area of a trapezium plus A; + A and
the area of a rectangle plus 24,. Hence, after sim-
plification

AA;, = B(u/2+v/2)+ Ay'(u+v)

+Ao" (u? +v?)/2 (17)

The difference in potential energy between the
buckled and nominal configuration of the system,
and hence its stability, depends on the change in
volume AVy. Hence, the expression for AAg is in-
tegrated over the segment to obtain AV;. Referring
to Figure 9 the values of u and v are replaced by
u sin ¢ and vsin ¢ respectively to obtain the area of
a general cross-section, which is rotated through =
around the axis

AV, = /{Bu+v sinp + Ap'(u + v)sing
0
2, 2
+Ao”% sin’ <p] dy (18)

Figure 9: Definition of deformation parameters.

The change in volume must be negative for the
system to be stable, implying that Equation 18 must
be negative. Equations 15 and 16 may be used to
evaluate u + v and u? + v?

wro=2 () (2 (19)

h’(ﬁQ 2 L 4 B2¢2

2, .2

= (=) (< 2
u® v < 51 > w) T (20)
Substituting back into Equation 18, ignoring higher
order terms, and setting AV < 0

ﬂ 2 2 2 2
[ [t () oo 2l (7) s

0

B2 2
+Ay f’ sin? p|dp < 0 (21)
Rearranging
By L [ 2
;ﬂh /(singo + §A6 sin
0
6hB
+?A8 sin” cp) dp <0 (22)

Neglecting the positive factor in Equation 22 and
integrating

2 3rhB
1+ Ay + %Ag <0 (23)

Substituting Equations 9 and 10 into Equation 23
and rearranging

_ ﬁ cos @ _ 37hB cosf + 0sinf
B sinf 412

0 24
sin0—00050< (24)
It can be shown that the third term in this equation
is much bigger than the second. Hence the following
stability condition is obtained

sinf — 6 cos
cosf + fsin 6

3m hB
W > (25)

This equation shows that stability increases with
the width of the column and the height of the seg-
ments, but decreases quadratically with the length of
the structure. The right hand side of Equation 25 in-
creases with increasing # hence less prominent lobes
lead to more stable structures. This equation may
also be rewritten as

sinf — 6 cosf
cosf + fsiné

3T a

T (26)
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where n is the number of segments and a is the as-
pect ratio (= B/ L) of the entire structure. Using this
equation it is easy to construct columns that are un-
stable; for example a 1 m long column of width 0.3 m
in which each has an angle of embrace 26 of 60° will
buckle if twenty segments are used. A column of the
same dimensions but using only fifteen segments will
be stable. Note that this result is independent of the
pressure in the column.

Stability of a Lobed Spheroid

This section examines the stability of a spheroidal
structure with lobes as shown in Figure 10. The
structure consists of sixteen gores attached to inex-
tensible tapes along the edges. The profile of the
tapes when a uniform pressure difference is applied
to the structure was first studied by Taylor® dur-
ing an analysis of the shapes of parachutes. It was
later extended to other kinds of decelerators?, and
the same approach has been recently proposed for
high pressure scientific balloons.” "

The standard design approach for these struc-
tures is based on the idea that the membrane forms
a series of small circular hoops which transmit the
pressure load to the meridional tapes. It is un-
stressed in the meridional direction and hence it is
likely to start wrinkling in this direction. The tapes
are highly stressed and take up a “funicular” shape
which is determined by the applied loads.
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Figure 10: View of lobed spheroidal (nominal con-
figuration)

The transverse lobe curvature, i.e. normal to the
meridians, is assumed to be constant for equilibrium.
The transverse radius of curvature need not be con-
stant along the meridian, but it will be assumed to
be so in the present study.

5

Profile of Meridional Tapes
This section is based on the work of Taylor?® with
some minor modifications.

@

(b)

Figure 11: (a) Elevation of a meridian (b) detail of
infinitesimal free body.

Vertical equilibrium of the infinitesimal element of
meridian shown in Figure 11(a) yields

d — (T Rsiny) =

dR PR

(27)
where 6, and p are respectively the segment semi-
angle and the pressure and the other variables are as
shown in Figure 11. Horizontal equilibrium gives

d
R (TRcosyp) = —pRtanp (28)
It can then be shown that
RQ
— =sin 29
R ® (29)

where Ry is the (maximum) horizontal radius of the
meridian.
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Further manipulation produces an integral equa-
tion for z, the vertical distance from the apex. This
can be solved using elliptic integrals. The outcome

is
Sv?2
Ry

R=Roen K - (30)

and

)
V2

In Equation 30 cn is a Jacobi elliptic function and

in Equations 30 and 31 K and E are the complete

elliptic integrals of the first and second kinds respec-

tively. The value of K is 1.8541 and the value of

FE is 1.3506, where H\/\m is the modulus.® It can be

shown that Y

5vV2

u=K Ro

where s is the arc-length of the meridian, measured
from the vertex.

The Taylor profile may now be computed using
Equations 30, 31 and 32. Note that R/Ry = 1 at
u = 0, hence u = 0 corresponds to the equator. Let-
ting L be the length of a meridian, then s = L/2
represents the location along the meridian at the
equator. The values u = 0 and s = L/2 are used
in Equation 32 to obtain

2= ?E|E§ - lei (31)

(32)

1 L

Ry = —=— 33

V2 K (33)
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Figure 12: Plot of meridional tape.

For any given radius, the radius at the equator
may be computed from Equation 33. Then the value
of u for any other point on the meridian may be eval-
uated by using Equation 32. With this, Equation 31

6

may be used to determine z. At the apex z = 0
and at the equator z/Rp = 0.598. Equation 30 may
be used to find the corresponding value of R. Fi-
nally the angle of the normal to the meridian may
be determined from Equation 29.

All of these calculations can be implemented in
Matlab where elliptic functions are available as pre-
defined functions.” A plot of 25/ Ry against R/Ry is
shown in Figure 12, where z; = 0.598 R, is the height
above the equator.

Buckling Modes

The approach used to determine the stability of
lobed spheroids is analogous to that employed for
lobed cylinders. Three buckling modes were con-
sidered in the stability analysis. The first mode in-
volves an out-of-plane distortion of the equator for
the balloon, whose amplitude varies as a sine func-
tion around the circumference. This defines the ro-
tation of each meridian in its own plane, which leads
to shapes that define a form of shearing deformation
of the lobed segments, see Figure 13. The second
mode involves an out-of-plane displacement of points
on the meridian. At the equator, the meridians ro-
tate by an amount that varies as a sine wave along
the circumference; the out-of-plane displacements of
points away from the equator are also defined by a
sine wave, see Figure 14.

_____ﬂ%%%///ﬂ%//////%//////
TR

V -~ \
Y/ i
\%\\\\\\§-._______,

Mg

N

)

Figure 13: First buckling mode (double sine wave).

It can be shown that either mode causes the total
volume of the structure to decrease for all possible
balloon geometries. This implies that all balloons
are stable for these particular buckling modes.

Combining the two modes, however, can lead to
an increase in the total volume of the structure.
Consider a vertical cross section between two neigh-
bouring segments, as shown in Figure 15(a). Next
consider the same cross-section but in the deformed
mode as shown in Figure 15(b).
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Figure 14: Edge-on view of a meridian in second
buckling mode.

10

@

(b)

Figure 15: Vertical cross-section between meridians

The contribution from the first buckling mode
can be represented by a vertical deformation § of
one side of the rectangle while the contribution from
the second buckling mode can be represented by a
rotation ¢ of the other side. The area of the cross-
section becomes greater in the deformed shape, as
can be seen by comparing the areas that are lost
with those gained (shaded in Figure 15). Because
the volume of a whole balloon is, in effect, obtained
by integrating over a series of elementary volumes
with the cross-sections shown in Figure 15, we have
thus shown that the volume enclosed in a balloon —
excluding the lobes — can be expected to increase
for any combined mode. In fact, as we will see at
the end of the paper, for small deformation ampli-
tudes the volume of the segments decreases, due to
the fact that in the first mode the meridians are be-
ing rotated. The volume enclosed by the lobes will
decrease in the buckled configuration, but this is a
less significant effect in some configurations.

7

A view of the meridians for the third buckling
mode is shown in Figure 16 for a maximum defor-
mation of 5 . Figure 17 presents the same structure,
but with the lobes shown.

Figure 16: Meridians in third buckling mode.
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Figure 17: Third buckling mode.

Volume Calculations

The volumes of a number of different balloons with
different, numbers of segments were calculated us-
ing Matlab.? The volume calculation algorithm is
divided into two parts. The first part determines
the volume of the segments assuming flat lobes. The
input required to do this calculation is a set of n
points on each meridian, typically n = 21 plus a sin-
gle point on the central axis. These points define the
vertices of n — 1 pyramids, one of which is shown in
Figure 18. Each pyramid is divided into two tetrahe-
dra, as shown, whose volume can be calculated from

1 oy oz 1
iz yo 20 1
Vol = — 34
ome = g T3 Y3 z3 1 (34)
g Ya zZ4 1

where (x;,y;,2;) are the cartesian coordinates of
point ¢. The volume of a whole segment is deter-
mined by summing the volumes of n — 1 pyramids,
and the volume of the whole balloon is the sum of
the volumes of all of its segments.
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Figure 18: Volume discretisation scheme.

The second part of the volume calculation algo-
rithm deals with the lobes. In analogy with the first
part, m points — typically m = 11 — are located
on the circular arc that defines a section of the lobe
passing through two corresponding points on neigh-
bouring meridians. In addition, points are defined
on corresponding chords, Figure 18(b). The volume
enclosed by this part of the lobe is obtained, again,
by summing the volumes of several tetrahedra. The
volume of a whole lobe is obtained by summing m—1
contributions.

Calculations were performed for balloons with
sixteen, thirty-two and sixty-four meridians with
L = 2, for three different lobe radii of curvature
R;. Table 1 presents the results for the undeformed
case. Table 2 presents the results for the third type
of buckling mode where the deformation varies as
a single sine wave around the circumference. Ta-
bles 3 and 4 present the results for deformation
modes based on double and quadruple sine waves
respectively. The results are presented for four dif-
ferent amplitudes of the buckling mode. Note that
the upper-right part of each table is empty, because
the smaller values of R;/L are not admissible for bal-
loons with a small number of meridians.

Number of R;/L
Meridians 0.4 0.2 0.1
16 1.3359 - -
32 1.2330 | 1.2784 -
64 1.2125 | 1.2214 | 1.2439

Table 1: Volume of undeformed structure.

Number of | Ampl. R;/L
Meridians (®) 0.4 0.2 0.1
16 0.5 1.3330 - -
1.0 1.3259 - -
2.0 1.3105 - -
5.0 1.2644 - -
32 0.5 1.2282 | 1.2768 -
1.0 1.2204 | 1.2732 -
2.0 1.2158 | 1.2648 -
5.0 1.2088 | 1.2417 -
64 0.5 1.2085 | 1.2189 | 1.2431
1.0 1.2078 | 1.2150 | 1.2412
2.0 1.2068 | 1.2126 | 1.2368
5.0 1.2026 | 1.2075 | 1.2237

Table 2: Volume of structure deformed in a single
sine wave.

Number of | Ampl. R;/L
Meridians | (°) 04 0.2 0.1
16 0.5 1.3107 - -
1.0 1.2727 - -
2.0 1.2492 - -
5.0 1.3508 - -
32 0.5 1.2166 | 1.2660 -
1.0 1.2116 | 1.2488 -
2.0 1.2068 | 1.2358 -
5.0 1.3623 | 1.3935 -
64 0.5 1.2072 | 1.2132 | 1.2374
1.0 1.2065 | 1.2114 | 1.2294
2.0 1.2043 | 1.2088 | 1.2226
5.0 1.3759 | 1.3801 | 1.3884

Table 3: Volume of structure deformed in a double
sine wave.

Number of | Ampl. R;/L
Meridians (®) 0.4 0.2 0.1
16 0.5 1.2382 - -
1.0 1.2055 - -
2.0 1.5539 - -
5.0 1.9897 - -
32 0.5 1.2076 | 1.2359 -
1.0 1.2768 | 1.2977 -
2.0 1.6137 | 1.6335 -
5.0 | 2.5510 | 2.5776 -
64 0.5 1.2058 | 1.2094 | 1.2239
1.0 1.2809 | 1.2847 | 1.2964
2.0 1.7119 | 1.7150 | 1.7252
5.0 | 2.9466 | 2.9490 | 2.9570

Table 4: Volume of structure deformed in a quadru-
ple sine wave.

A comparison of the volumes of the deformed
balloon, Tables 2—4, with the volumes of the corre-
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sponding balloons in the nominal configuration, Ta-
ble 1, shows that the single sine wave mode leads to
smaller volumes. The modes with higher wave num-
bers produce a volume increase for sufficiently large
amplitudes.

Discussion

Prior to the study presented in this paper there was
little evidence of instability in membrane structures.
The Endeavour balloon provided physical proof that
instability could be a problem and this was the main
inspiration for this work.

Both of the structures investigated in this pa-
per show unstable behaviour. The analysis of the
lobed cylinder demonstrates that a simple membrane
structure becomes unstable for certain parameters.
The system stability may be determined by exam-
ining just three parameters, namely the number of
lobes n, the overall aspect ratio a and the half-angle
# embraced by the lobes in cross-section.

The lobed spheroid is more complex and its un-
stable deformation modes are more subtle. A de-
formation mode was proposed which was found to
produce unstable behaviour. An interesting feature
of this mode is that the enclosed volume initially de-
creases with increasing deformation. This feature
was investigated further by calculating separately
the lobe and segment volumes. Table 5 shows the
results for balloons with R;/L = 0.4 and L = 2, that
are deformed into a double sine wave.

The volume of the segments initially decreases
until there is sufficient deformation to result in an
increase in the segment volume. The volume of the
lobes decreases monotonically. The total volume ini-
tially decreases before increasing until such time that
it is greater than the initial volume. At this point it
may be said that the structure is more stable in the
deformed mode.

The relative stability of the deformed shapes may
be seen more clearly if the volumes are normalised
relative to the corresponding nominal volume. Ta-
ble 6 presents these values for a double sine wave
mode.

It is clear that the change in total volume and
hence the stability of the balloon is closely linked to
the number of meridians. The greater the number of
meridians the smaller the amount of deformation re-
quired to cause the total volume to increase. This is
shown in Figure 19 which is a plot of the normalised
volumes for R;/L = 0.4.

9

Number of | Ampl. Volume
Meridians (®) Segments | Lobes | Total
16 0 1.1753 | 0.1606 | 1.3359
0.5 1.1746 0.1361 | 1.3107
1.0 1.1724 0.1003 | 1.2727
2.0 1.1634 0.0858 | 1.2492
5.0 1.2836 | 0.0672 | 1.3508
32 0 1.1983 | 0.0346 | 1.2330
0.5 1.1981 0.0185 | 1.2166
1.0 1.1973 0.0143 | 1.2116
2.0 1.1940 0.0127 | 1.2068
5.0 1.3524 | 0.0099 | 1.3623
64 0 1.2041 0.0084 | 1.2125
0.5 1.2040 0.0032 | 1.2072
1.0 1.2036 | 0.0029 | 1.2065
2.0 1.2018 0.0024 | 1.2043
5.0 1.3742 | 0.0017 | 1.3759

Table 5: Volume of structure deformed in a double
sine wave, R;/L = 0.4.

Number of | Ampl. R;/L
Meridians (®) 0.4 0.2 0.1
16 0.5 | 0.9811 - -
1.0 | 0.9527 - -
2.0 | 0.9351 - -
5.0 1.0112 - -
32 0.5 | 0.9867 | 0.9903 -
1.0 | 0.9826 | 0.9768 -
2.0 | 0.97838 | 0.9667 -
5.0 1.1049 | 1.0900 -
64 0.5 | 0.9956 | 0.9933 | 0.9948
1.0 ] 0.9951 | 0.9918 | 0.9883
2.0 | 0.9932 | 0.9897 | 0.9829
5.0 1.1348 | 1.1299 | 1.1162

Table 6: Normalised volume of structure deformed
in a double sine wave.

1.15

1.1 av
£ e
=) / s
S10s o
3 ' 64 meridians /" /
: .

1 .
E "I —— .
(=) S T— e
z A 32 meridians -

0.95¢ -

16meridian\s\\\‘i///
0.9 . . . . . . . . .
0 05 1 15 2 25 3 35 4 45 5

Amplitude of Deformation (deg)

Figure 19: Variation of normalised volume with de-
formation amplitude (R;/L =0.4,L = 2).
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The value of R;, the transverse radius of curva-
ture of the lobes, also has an effect on the total vol-
ume but this is less noticeable. Examination of Ta-
ble 5 shows that the volume of the segments is much
greater than the volume of the lobes and hence the
lobes do not have as significant an effect as the num-
ber of meridians.

Conclusion

It has been shown that both a simple lobed column
and a lobed spheroid may become unstable. The
stability of the lobed column depends entirely on its
geometry. The stability of the spheroid depends both
on the geometry of the structure and on a small but
finite perturbation. The size of the perturbation re-
quired to cause the structure to become unstable de-
pends closely on the deformation mode and on the
number of meridians in the structure. The larger
the number of meridians the smaller the perturba-
tion required to cause instability. The effect of the
lobe geometry is not as significant as for the column.
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